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Correlations Between Zeros of a Random Polynomial
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We obtain exact analytical expressions for correlations between real zeros of the
Kac random polynomial. We show that the zeros in the interval (—1,1) are
asymptotically independent of the zeros outside of this interval, and that the
straightened zeros have the same limit-translation-invariant correlations. Then
we calculate the correlations between the straightened zeros of the O(1) random
polynomial.

KEY WORDS: Real random polynomials; correlations between zeros; scaling
limit; determinants of block matrices.

1. INTRODUCTION

Let f,(¢) be a real random polynomial of degree n,
fA)y=cotcit+ - +c,t" (1.1)

where ¢, ¢1,..., ¢, are independent real random variables. Distribution of
zeros for various classes of random polynomials is studied in the classical
papers by Bloch and Polya [BP], Littlewood and Offord [LO], Erdés
and Offord [EO], Erdés and Turan [ET], and Kac [K1-K3]. We will
assume that the coefficients ¢,, ¢,..., ¢, are normally distributed with

Ec¢;=0, Eci=g? (1.2)

In the case when
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f.(t) is the Kac random polynomial. Another interesting case is when

As is pointed out by Edelman and Kostlan [ EK], “this particular random
polynomial is probably the more natural definition of a random polyno-
mial.” We call this polynomial the O(1) random polynomial because its
m-point joint probability distribution of zeros is O(1)-invariant for all m
(see Section 5 below). The O(1) random polynomial can be viewed as the
Majorana spin state [ Maj] with real random coefficients, and it models a
chaotic spin wavefunction in the Majorana representation. See the papers
by Leboeuf [Lebl, Leb2], Leboeuf and Shukla [LS], Bogomolny,
Bohigas, and Leboeuf [ BBL2], and Hannay [ Han], where the SU(2) and
some other random polynomials are introduced and studied, that represent
the Majorana spin states with complex random coefficients.

Let {z,,.., 7.} be the set of real zeros of f.(t). Consider the distribu-
tion function of the real zeros,

P()=E #{j:7,<t}

where the mathematical expectation is taken with respect to the joint dis-
tribution of the coefficients c,,..., ¢,. Let

pA1)=P(1)

be the density function. By the Kac formula (see, e.g., [K3]),
_ /A0 () - B3(®)

where

A, )= ait¥
Jj=0
n . AI

B, (1) = Z ja}t2f—1=—”2(i) (1.4)
j=1
Lo o A1)y A1)

- 2,.242—-2 _“n n
C 1) j;] alt A + 47

The derivation of (1.3) by Kac is rather complex. A short proof of (1.3) is
given in the paper [ EK] by Edelman and Kostlan. See also the papers by
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Hannay [Han] and Mesincescu, Bessis, Fournier, Mantica, and Aaron
[M-A], and Section 2 below. The formula (1.3) implies that for the Kac
random polynomial,

. 1
lim Pn(t)—‘P(t)—m, 1# 1 (1.5)
and
1[n(n+2)]""?
+1)=-| 2212
pax) = | 12

(see [K3], [BS], and [EK]). The limiting density p(#) is not integrable at
41, and this means that the zeros are mostly located near +1. Observe,
in addition, that p,(¢) is an even function of ¢, and the distribution p,(¢) dt
is invariant with respect to the transformation ¢ — 1/z. Kac [K1] proves
that the expected number of real zeros has the asymptotics

N,=[" pAtydi=(2/n)logn+0(1)
Kac [K2], Erdés and Offord [EO], Stevens [Ste], Ibragimov and
Maslova [IM], Logan and Shepp [ LS], Edelman and Kostlan [ EK], and
others extend this asymptotics to various classes of the random coefficients
{c;}. Maslova [ Masl] evaluates the variance of the number of real zeros
as

Var #{j:f,,(‘cj)=0}=%<1—%>lnn(l+o(l)), n— W

and she proves the central limit theorem for the number of real zeros (see
[Mas2]), for a class of distributions of the random coefficients {c,}.

In this paper we are interested in correlations between the zeros t; of
the Kac random polynomial. Let us consider first the zeros in the interval
(—1, 1). Define straightening of t; as

G=P), PO pw)du

In the limit when 7 — oo, the straightened zeros {; are uniformly distributed
on the real line, so that

lim E #{j:a<{;<b}=b—a (1.6)

n—> 00
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From (1.5) we get that

‘' du 1 1+¢] 1
P)=| ——=—In|—|=- ht
) ch(l—uz) 2nn‘1—t 7 2rtan
hence
1
Cj=;artanhrj (1.7)

Let p,,.(s;,.5,) be the joint probability distribution density of the
straightened zeros (;,

Pe{; e[sy, 51+ 45,1, I, €055 S+ 45,1}

Ponl 15> S) = s, ,...l,ifnlgmao |ds, - As,|
(1.8)
It coincides with the correlation function
Ko (515} = Asl"__l’ifj?m y E[¢.(s,, s, + i's;l)::j;ijm’ St 4s,,)] (19)
where
Ela,b)=#{ja<{;<b}
Our aim is to find the limit correlation functions
k(8150 Sp) = nlijréo K81 55 S {1.10)

We prove the following results.

Theorem 1.1. The limit two-point correlation function k,(s, 5,) of
the straightened zeros {;==""artanh 7, of the Kac random polynomial is
equal to

{sinh 7(s; —s,)| . 1

k =tanh? — 1.11
2(s, 8,)=tanh’ n(s, —s,) + cosh? (s, —5.) arcsin cosh (s, —53) ( )

Observe that k,(s,, s,) depends only on s, —s,, and it has the following

asymptotics:
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2

n
kz(slasz):'gisl_SZI+0(|s1_s2|2)a |sy — s,/ =0
16 — 47 |5y — 5] — 67 5]~ 55]
k2(31,52)=1—?e T2+ O(e 1), |s1— 85| = o0

The graph of k,(0, s) is given in Fig. 1.
Theorem 1.2. The limit m-point correlation function k,(s;,..., 5,,)
of the straightened zeros {,==""artanh 7, is equal to

kop{S1sms8,)=2"" ] tanh®az(s,—s,)

I<i<j<sm

xj f yi-opul e 2D dy, . dy,  (112)

where Y =(y,.., ¥,,) and the matrix I",, is defined as

1 m
rf(— 1 13
" <Coshﬂ(si—sj)>i,;=1 -

In particular, &,(sy,., 5,,) depends only on the differences of s,,.., $,,,
hence it is translation invariant.

The proof of Theorems 1.1 and 1.2 is given in Sections 2, 3 and 4
below. It is based on computation of the determinant of some matrices

1 T T T T v T T T

0.9 ]
0.8 i
0.7k i
0.6 {
a5t i
0.4} 4
0.3 i
0.2+ ]

01 4

0 ' 1 ' . L ' I s .

0 0.1 0.2 0.3 04 0.5 0.6 0.7 08 0.9 1

Fig. 1. The two-point correlation function of straightened zeros of the Kac random
polynomial.
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which consist of 2 x 2 blocks. This computation is of independent interest.
The basic example is the matrix

A, A4y, 4.,
4,=| M Am o Ao (1.14)
Ay Ao Ao
where
1 t
4= 1—tjtftj (111’;’:32, i, j=1,.,m (1.15)

(1—z1,1) (1-11)

We prove in Section 4 that

— f. 8
detA,,,= — H12<2<j<m(ti tj) -
].—I,'=1(1 _ti) Hlsi<j<m(1 —tit]')

It is interesting to note that determinants of matrices consisting of 2 x 2
blocks appear also in the theory of random matrices (see, e.g., [ Dys] and
[ Meh1), statistical physics, and other applications.

Consider now zeros 7; with |7;| > 1. Define straightening of 7; as

(1.16)

L‘“’p(u)du if r<—1

> p(u) du if t>1 (1L17)

L=Pk).  P(0) ={

In the limit when n — oo, the straightened zeros {; are uniformly distributed
on the real line. From (1.5)

1 1+¢ 1
P(t)=—1n ! =—artanh ¢! (1.18)
2n 11—t =

so that
{,=="'artanh 7' (1.19)

Denote by k2%(s,..., 5,,) the correlation function of the straightened zeros
{; with |7;[ > 1.

Theorem 1.3.

KO (81 en S1) =Kk S 1 5eees S1) (1.20)

nm
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In other words, the correlation functions of the straightened zeros out-
side of the interval (—1, 1) coincide with those inside of the interval
Finally, let us consider correlation between zeros inside of the interval
{(—1,1) and outside of this interval. Let K,,(¢,,.., t,,) be the correlation
function of the zeros 7; (without straightening).

Theorem 1.4. Assume that [z|,.., |7,/ <1 and |t,,],.., [t,.| > 1.
Then the limit

lim K,,(¢t,..,¢%,)=K,(t,.,t,) (1.21)
exists and
K, (ty5 t,) =K, (t15s 1) Ky (84 150 b)) (1.22)

This means that the zeros inside and outside of the interval (—1, 1)
are asymptotically independent. Observe that

Km(tl 3%y tm)

_— (1.23)
plty) - 'P(tm)] 4 =Py Ly =P~ 1(s,,)

km(sl 300 sm) = l:

provided that either all |z;,| <1 or all |7;{ > 1 (cf. the formula (2.14) below).
Proof of Theorems 1.3 and 1.4 is given in the end of Section 4.

In Sections 5 and 6 we investigate correlation functions of real zeros
of the O(1) random polynomial.

2. GENERAL FORMULAE
Let
=3 ¢t (2.1)
j=0

be a polynomial whose coefficients ¢, are random variables with an
absolutely continuous joint distribution. Let

$la, b)=#{tx a<7t, <D, f,(t) =0} (2.2)

be the number of real roots of f,(¢) between a and b, and let p,(¢) be the
density of real zeros ¢, of f,{t), so that

B&(ab)=] pr)d (23)
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It is not difficult to show that

pA0=[" 191 D0, ;1) dy (24)

where D,(x, y; £) is a joint distribution density of f,(z) and f7(¢),
b ad
Pr{a<f(t)<b;c<fi(t)<d) =j j D(x,y;t)dxdy  (25)

Indeed, if /() =y then asymptotically as 4t — 0, the function f,(¢) has a
zero in the interval [ £, 1 + A¢] if f,(¢) is in the interval [0, —y 4t], and this
gives (2.5). Similarly, the m-point correlation function K, (¢,,..., t,,) for
pairwise different ¢,,..., t,, is equal to

Kmn(tl LRal] tm)

=J‘7 J:_ 'yl”’ymlDnm(Onyla'“aO’ym;tlr-',tm)dyl"'dym
(2.6)

where D, (X[, V1sr Xp» Voms L1ses L) 18 @ joint distribution density of the
vector

Fn = (fn(tl)i f'n(ll)” fn(tm)’ fln(tm))

so that

Pr{al <fn(tl) <bla cl <f’n(tl) <dl ’) am <fn(tm) <bm’ cm<f:l(tm) <dm}

=jbl Jdl '--rm Jdm D, (X15 Vises Xoms Yoy Loy L) dX1 Ay -+ dX,, dY,,
a Je a, Ve, @7

If {¢,} are independent random variables with Varc;,>0 then the
covariance matrix of the vector F,, is positive, provided that n > 2m —1 (see
Appendix B at the end of the paper). Similar formulae are derived for the
correlation functions of complex zeros of random polynomials with com-
plex and real coefficients (see [Han] and [ M-A]).

Observe that

” bl bm
BT &danb)=] [ Kupltises t) -, (2.8)

Jj=1 a4y Gy
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provided that (a,, b,),..., (a,,, b,,) are pairwise disjoint, and
b
pAt)=K, (1),  E({(a b))=j K,\(t) dt (2.9)

For the general case, when (a,, b,)...., (a,,, b,,) may intersect, we have the
following extension of (2.8):

m 14
E[] ¢an0)= > 1] <j d;,) K, (t,.,1) (210)
Jj=1 (Afss A) =1 rT‘.EAj(a,,b,»)

where the sum is taken over all possible partitions (A4,,..., 4,) of {1,.., m},
such that

AinAd;=, i#j
A0 - ud,={l,.,m} (2.11)
|4, =1, i=1,.,1

In particular, when m =2 we have

ELE @, b)) Ean b1 =[ [ Kty ) by, (212)

if (@, by) " (a,, b,) =, and

Bleia b1 =] pAnydi+]| [ Ko(tytydidn,  (213)

From the definition (1.9) of the m-point correlation function, it follows that
the m-point correlation function k,,(s;,..., s,,) of the straightened zeros
{;= P(t,) is related to the m-point correlation function K, (¢,,.., t,,) of the
zeros 7; by the formula

K, (tisrt,,)

—m o A (2.14)
pty) - 'P(tm)] 1y =P ) £y = PN,

knm(sl L) sm) = |:

Assume now that the coefficients ¢; are independent Gaussian variables
with zero mean and the variances af, j=0,.,n Then D, (x,y;t) is a
Gaussian distribution density with the covariance matrix

A:< EfAt) Efn(t)f;(t)>=<An(t) Bn(t)>

Ef () fi(t)y  E(fi(0)? B(1) C(1) (2.15)
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where 4,(t), B,(t) and C,(t) are defined in (1.4), and from (2.4) we get the
Kac formula (1.3).

3. TWO-POINT CORRELATION FUNCTION FOR THE
KAC POLYNOMIAL

Let f(t)=co+c t+ --- +c,t" be the Kac polynomial, so that ¢,
k=0,.., n, are real independent Gaussian random variables with

Ec, =0, Eci=1 (3.1)

Consider the covariance matrix 4, of the Gaussian vector (f,(¢,), f.(¢1),

Jlt2), [1(t2)). From (3.1)

" 1—(£,t,)" "1
B/t ft) = 3 (11 =2
k=0 —tit2
0 [1—(t,2,)" !
Ef'(t L= | ———r0 3.
Filt) S = 5| | (32)
0% [1—(t;t,)"*!
Ef, W1) =
1t 1ot = | |
Assume that |z,], |£,] <1. Then from (3.2) we obtain that
lim 4,=4 (3.3)
with
1 f 1 f
12 (1—17)° l—t,t, (1-1,1,)°
t 1+ t, 1+1,t,
S (1-1)* (1-1) (1-41) (1-11)° (34)
1 14122, 1 t,
1—t,t, (1—11,)° 1—-42 (1—12)?
1y L+1t,¢, t, 1+42
(1-1,,)> (1-11)° (1= (1-13)°
We prove in the Section 4 below that
t— )"
det 4= (1 = o) (3.5)

(1=)* (1 =) (1= 1,15)°
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Let 2 be the two-by-two matrix obtained by removing the first and the
third rows and columns from 4~'. Then

9:(‘2 f;) (3.6)

where
A=(1—t0)* (1 =) /(t; —1,)*
B=(1—-t;1,)*(1 =13 (1 = 3)*/(t;, — 1,)* (3.7)
C=(1—1,0)* (1 =83V )(t; —1,)*

By (2.6), the correlation function K,(¢,, ¢,) is equal to

Ky(t, t,)= f f |y ol e 72X dy dy,  (3.8)

1
472 Jdet 47— ' —wo

where Y={(y,, y,). Since

I g —1/2(Ay> + 2By y1 + Cy2)
f f |y1 yal e AR RO dy, dy,

— 00 — o0

arcsin 5>, o= _B_ (3.9)

Jac

_AC(1—52)< +

o
J1-6°
(see Appendix A), we obtain that

(ti—1)°
(1—1,5,) (1 —t%)(l —13)

KZ(tla t2)= 2
T
|t, — 1,

+
(1 —1,6,)* /(1 —1})(1 —13)

JA=i-5) (3.10)

1—1,1,

X arcsin

Consider the correlation function k,(s,,s,)} of the straightened zeroes
{;=n""artanh 7;. By (2.14),

K2(tl > t2)

() pt)’ t, =tanh(ns,), t,=tanh(ms,) (3.11)

ky(sy,s,)=
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Since

1
p(t)zn(l——tzi

(see (1.5)), we obtain that

k(sy, 5,) = (t,—1,)° + [ty —t,] /(1 =]l —13) arcsin (1—=23)(1-12)

(1—1,8,)? (1—1t,1,)° 1—1,1,

|sinh 7(s; —s,)] sin 1 (3.12)

=tanh?n(s, —s,) + arc
(51=52) cosh? ne(s, —5,) cosh (s, ~s,)

Theorem 1.1 is proved.

4. HIGHER ORDER CORRELATION FUNCTIONS FOR THE
KAC POLYNOMIAL

Let f,(¢) be the Kac polynomial, and let ¢, t,,..., t,, be m >3 distinct
points in the interval (—1, 1). Denote by 4" the covariance matrix of the
Gaussian vector

(St s L8 0)ses £u(10), Fo(2,))

and by 4,, the limit of 4" as n— oo,

AMZJ?;Ag) (4.1)
Then
4y 4% - 4y)
A0~ A9 4% - 45 (42)
Ay A 4,
where

ap (BRI L) B4 1)) 43)

TR S EL() 1)
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and by (3.2),

All AIZ Alm
A — A21 A22 A2m (44)
Aml AmZ Amm
where
1 t;
1—1,t, 1—1¢,t)?
A,‘j= ity ( i j) (45)
1 1+1,1
(1-t1 (1—1)°
[cf (3.4)].

If Q,, denotes the m xm matrix obtained by removing all the odd
number rows and columns from 4, ', then by (2.6), the correlation func-
tion K, (¢,,.., t,,) i equal to

Km(tl 3eeey tm)

—1/2A Y2, Y) dy,---dy,, (4.6)

S N S
_(2n)mm L _w|J’1‘--ym|e

where Y=(y,,.., ¥,,)- We have the following extension of the formula (3.6).

Proposition 4.1,

Hl <i<j<m(ti_ tj)S
;n=1(1 - t?)4 Hl <i<j<m(1 - titj)s

The proof of Proposition 4.1 uses the following lemma.

det 4,,= (4.7)

Lemma 4.2. Let f,(¢t) (n=3) be any random polynomial and
ti, t,, be any m real numbers. Let 4" be the covariance matrix of the
Gaussian random vector

(Fal21)s Fult ) fil ) FE))
which is defined in (4.2) and (4.3). Then

det 4P =P (t1,nt,)  [I  (2i—1)° (4.8)

I<i<j<sm

where P,(f,,.., t,,) 18 a polynomial.
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Proof. To simplify notation we drop the indices m, n in the matrix
4. We have

A:(Aij)i,jzl m (4'9)

,,,,,

where

4 _<Efn(t,-) fA)  Ef(t) f,n(tj)> (4.10)

TUNESU) £.1) ES (1) £i(t)

In the following discussion we consider linear transformations of the matrix
A which do not change its determinant. By subtracting the first and second
column of 4,, from the first and second column of 4, respectively, we get
the matrix 4" with the 2 x 2 blocks

A(ﬁ])z<Efn(t,~)(fn(t,-)—fn(t1)) Ef(e)f 1) =1 (21))
YNBSS —F10) BN (1) =1 (t)

Since f,(¢) is a polynomial, we can take the factor (¢;,—¢,) out of the first
two columns of the matrix 4", and this proves that det 4 is divisible by
(t;—1,)>. Repeating the same operation on rows we get the factor (£,—1,)*
How to get (¢;,—#,)®? To that end let us subtract the second column of the
matrix 4¢}) = 4,, multiplied by (z,—¢,) from the first column of the matrix
4. This produces the matrix

AD — <Ef,,(t,-)[fn(tj) =Lt = (=) (1)1 EL)L(2) —f'n(tl)]>
v Ef(tLft) —fu(t) = (t;,— ) f(t)] EL()LSW(t) —f(2)]
(4.12)

ijr

> (4.11)

Now we can take (¢,—1;)* out of the first column and (z,—t,) out of the
second column of the matrix 4. Repeating the same operations over the
rows we get that det 4 is divisible by (z,— ¢,)®. Finally, let us observe that
by the Taylor formula

(tj_tl)z

fn(tj)_fn(tl)_(tj_tl)fn(tl)= )

H(t)+ 0= 1))

and

[ty =ty ==t} f1(t) + Ot~ 1107

hence if we subtract the second column of the matrix 4% multiplied by

(t;—,)/2 from its first column, the difference is of the order of |t,—1,]°
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and we can take the factor (¢, — 1,)* out of the first column and (¢,—¢,) out
of the second column. This gives the factor (¢,—¢,)*. The same factor is
taken out of the rows, hence det 4 is divisible by (¢,—¢,)®. Similarly, it is
divisible by (z,—¢,)® for all i # j, and hence it is divisible by their product.
Lemma 4.2 is proved.

Proof of Proposition 4.1. By (4.1), we have

det 4,,= lim det 4" (4.13)

n— oo

for all ¢,,.., t,, in the interval (—1, 1). In fact, the limit (4.13) holds for all
complex ¢,,..., t,, in the unit disk {|7] <1}, and the convergence is uniform
on every disk {|f] <r} where r <1. Hence by Lemma 4.2,

det A, =H(t,,nt,) [] (t—1)3 (4.14)

J
I<i<j<sm

where H(t,,..., t,,) is holomorphic in the unit disk.
Now, let us consider the expression of det 4,, in terms of the matrix
elements 6, of 4,,, that is

det Am=25051a(1)”'52ma(2m) (4.15)

where ¢ is a permutation of {1,.., 2m} and ¢, = +1 depending on whether
o is even or odd. The common denominator of the sum in (4.15) is

s

(1= J] Q-1 (4.16)

i=1 I<i<j<sm

Terefore by (4.14),

]

]._Il $i<j$m(ti_ tj)g C(tlr--; tm)
?1:1(1 - t?)4 H1<i<j<m(1 - titj)s

where C(¢,,..., ,,,) is a polynomial of 7, ,..., ¢,,. Observe that (4.17) holds for
all points ¢,,..., t,, in the unit disk, and so it can be extended to the whole
complex plane. We are going to show that C(¢,,..., t,,) is a constant, and
moreover, that

detd,,= (4.17)

Cty o t,,) =1 (4.18)

Let us look at the asymptotic behavior of det 4,, as ¢, — o while 1,,..., ¢,,
are fixed. To see it more clearly, let us change 4,, to 4¢!’ by subtracting the

822/88/1-2-20
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(2i—1)th column and row from (2i)th column and row, respectively, for
i=1,..,m Then

4%y 4y - 44
AD = 4% 4y - 45) (4.19)
B 4G Al
where
1
4R L-n : (4.20)
(11—
for k=1,..,m, and
1 t,—1t
_ _ 201 _ 2
4y’ = lz,. —tlt,t.j 2;,.1:,(1 t,?;;?tj—) 2(% - ;Jt)z +1 (4.21)

(I-1)*(1=17) (A=)1=1)(1—1,1)°

for i# j. The leading powers of the elements of 4!}, as ¢, - o0, are

yeg 0 1/, 1/t, - 1jt, 1/t
0 1% vy 18 . 18 18
1/, /88 = e % *
AP = 1/t; 17« * ek * (4.22)
1/t, l/tf * * * *
1/t, 1/88 = ® e % *

where #’s stand for the terms of the order of O(1). Therefore

1
det4,,=0 (t?)’ ;> o (4.23)

By (4.17),

const - C(¢;,..., t,,,)

8
tl

det4,,~ , t,—>
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hence C(¢,,..., t,,) is constant in ¢,. The same argument on ¢,,.., t,, shows
that it is independent of ¢,,.., ¢,,, so it is indeed a constant, say C,,, i.e.,

Cm Hl <i<j<m(ti— tj)8
T (1=1)? IMicicjeml— titj)g
To prove that C,,=1, let us consider the asymptotic behavior of det 4, as

t, — 1 with ¢,,..., t,, fixed and close to zero. Then on the one hand, we have
from (4.28) that

det 4, =

(4.24)

lim (1 — ¢2)* det 4,, = CC'" det 4, (4.25)

n—1 m—1

On the other hand,

1
1-7) * "
1
an= ¥ Gmapr ot (4.26)
* *
A,
* *

where the terms * are regular at r; =1. Hence the leading term of the
Laurent series of det 4,, at 1,=11is (1 —1¢,)"*det 4,,_,, which shows that

Con det A, _,=detd,_, (4.27)

m—1
Thus C,,=C,,_;. Repeating this argument we get that
Cm=Cm—l= EEEIRY =C2=C1=1

Therefore C,,=1. Proposition 4.1 is proved.
Similarly we prove the following proposition.

Proposition 4.3.
Wy @iz o Oy
W2 Wy - Oy

Qm: see v e rew (4'28)

Dt Wpz - Wy
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with

;= (1 - t12)3 l_[,';ej(l — titj)4
IT.(ti—1)*

(4.29)

and

(A= (1= TTe e i(l = ,2)* Tl o (1 — 1;10)° o
2 , 4.30
O T (T 1) Tl ti— 107 T 1y 12 i#j (430)

Put now
t;=tanh(zs,), i=1,.,m (4.31)
Then by (4.29) and (4.30),
w,=(1—12)*[] coth* n(s, —s))
77 (4.32)

w;=(1—-1)? (1-1)¥* I, cosh? ”(Si“ﬁk)(nk #j)COSh4 n(s; — Si)
cosh 7(s;, —s;

for i+# j. In addition,

<i<j< h8 i — 5
det 4, = Ll1si<s<mtanh" 7(s,— ) (433)

I (-

By (2.14),

Km(tl 3000y tm)

km(s sees sm) = m (434)
l IT., p(2)
Now let us substitute y,’s in (4.6) by
(1-t)2y, i=l.,m (4.35)

then

[T, p(2)

2"’ I—[l Ki<jsm tanh4 ﬂ,'(st—s])

xj j |y1- ol € V2EERD gy dy - (4.36)

— 0 — 0

Km(tl 3eees tm) =
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where
Oy Oy Tim
S (437)
Omi Om2 O m
with

o:=[] coth*n(s,—s,)

7 (4.38)
N ) Py coth?® (s, —s) HkaejCOthz (s, — 8i)
B cosh n(s;—s;)

;
Now substitute y/s in the formula (4.36) by

y:[] coth®n(s,—s), i=l.,m (4.39)

J#i
then

K (ti,t,)=2""T] p(t) ][] tanh*n(s;—s))

i=1 I<i<j<m

X[" [ iyl e PO dy oy, (440)

o _
where

1 m
=— 44
e <COSh n(si_s‘))i,j=1 (441)

J

Thus

k815 8,)=2""" ] tanh*n(s,—s))

I<i<jsm

X[7 o iyl e T Gy iy, (442)

— o0

Theorem 1.2 is proved.
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Proof of Theorem 1.3. Let

fty=cotcit+ - +c, "4, 1"
443)
g =cot"+c "'+ ... +c, _,t+c,

Then if 7, # 0 is a zero of f,(¢) then 7' is a zero of g,(¢). Hence if l <a<b
then

Sla, b)y=Cy(a™',b7Y) (4.44)

where £ (a, b) is the number of zeros of f,(f) in the interval (4, b). Observe
that the distribution of the vector of coefficients (c,,..., ¢,) coincides with
the one of the vector (c,,..., ¢,). Hence

E[¢day, by) - Ela,, b,)1=E[& a; b1 ") - & fa,, ' b, )]
=E[{dar b7 Y- Ela,’ b, )]  (445)

Take a,=t; and b;=1t;+ 4t;, j=1,..,m, and get 4z,— 0. Since
la='—=b"'=a"%|la—b|+O0(la—bl?), a—b
we deduce that

K, (t;7 et ")

P =K, (t 150 L) (4.46)
t%...[fn 1
Hence
K, (t7'.t>Y) K, (t;,..t
nm—(ll ”il) — nm( 1 m) (447)
pler)--p(e,) p(ty)---p(t,)
because

p(r )= =p(1)

n|l—1t2
This proves that
ksrlizt(slﬂ"'ﬂ sm) = knm(slb"': Sm)

Theorem 1.3 is proved.
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Proof of Theoremn 1.4. Let |t,l,..,|t;| <l and [t;,4],... |2, > 1.
Denote by D,,.(X1, V1. Xms Vs 15 b)) the joint distribution density of
the vector

(fn(tl)’fn(tl)’~~~»fn(tl)’f:1(tl), g,,(t1+ l)n g:.(tl+ 1)7"" gn(tm)s g:,(tm))
Then

K, (t50s tm)=Joo

-0

[
X D0 Y1 sy Oy Vs Ey ey 8 87 s £,1) Yy -+ Ay, (4.48)
The covariance
Ef(t)gt; Y=t +177 "+ o 1) T 1 1<iglI<j<m

goes to 0 as n — oo, together with the partial derivatives in ¢,, t;, while

i (4.49)
. 1
lim Eg,,(tf‘)g,,(tj_‘)=w, I+1<i, j<m

H > OO i j
This proves that the limiting Gaussian kernel D,,=lim,_,  D,,, is factored,
Dm('xl> yla"-a xma ym5 tl,-"> tl’ t)i*.ll 3oy t,zl)
=D (X105 Yiseos X1s V15 Eiseens 1))
x Dm——l(g)(xl+1’ Vit Xpps Vens tlip»ll"--s tyzl)

Hence the correlation function K, is also factored. Theorem 1.4 is proved.

5. CORRELATIONS BETWEEN ZEROS OF THE O(1)
RANDOM POLYNOMIAL

In the following two sections we discuss the correlation functions of
real zeros and the variance of the number of real zeros of the O(1) random
polynomial. Let £,(¢) be a O(1) random polynomial, that is

[ = i c t* (5.1
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where {c,} are real independent Gaussian random variables with

Ec,=0, Ec§=a§=<z> (5.2)

In this case (1.4) reduces to
A()y=(1+1)"
B (t)=nt(1+*)"! (5.3)
C(t)y=n(1+n*)(1+ )2

which gives

V/n (5.4)

Pn(t)=m

(see [BS], [EK], [BBL1], and others). The average value of real zeros is

E #{k:1,eR) =f°° pAtydt=1/n (5.5)

and the normalized density,

pt) 1

Jn T a(l+1%)

is the Cauchy distribution density. Observe that both (5.4) and (5.5) are
exact relations for all n. Let us compute the two-point correlation function
Ko(ty, t3).

Define

(5.6)

¢n(t)=(—£% (5.7)

Then the real zeros of ¢,(¢) coincide with those of £,(¢). Hence, similar to
(2.6), we can write that

Kot ) =] [ (3172 Daf0,71, 0, ya3 11, ) dyidyy (58)

— o0 — 00
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where D,,(x, ¥, X3, ¥2; 8, t,) is the distribution density function of the
vector

(@.t1), 9.(11), @.(12), @1(12))

Observe that

(1+28)"

E t t,) = = .
(pn( l)¢n( 2) pn(tla t2) (1 +t%)n/2(1 +t§)n/2 (5 9)
and
apn (tz_tl)
E ol (t t,)=—1{(1t,, =Rnp, <
(pn( 1)¢n( 2) atl ( 1 t2) np (1+t1t2)(1+t%)
E ¢'(t,) 't )—a—z”"—(z 1) (5.10)
Pully) @\l a1, o, 15 L2 .
PRY
- _nzpn (t2 tl)

+ —_—
O+6 0+ 00+8)  Pri+n6)?
Define the random variable ,(¢) as

(D1 +1%)
Jn
Let D, (x(, ¥, X2, ¥2; t1, t2) be the distribution density function of the

random vector (¢,(t,), ¥.(t,), @.(f;), ¥,(¢,)). Then after a change of
variables, (5.8) is rewritten as

Y1) = (5.11)

K, (t,1t5) P el ’
——— =7 | | D0, y,,0,y,;t,,t,)dy, d 5.12
(1) pkta) J\Aoo“[—oo Y1)2 20, ¥y Yasti, ty)dy, dy, ( )

From (5.10),
_ \/’;(tz_tl)
Byt @ulta) =0~

Cont—1)’  (L+)(1+8)
(1+1,6)°  (1+1,1)? }

(5.13)

EwAh)WAb)=pn[
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hence the covariance matrix of the vector (¢,(z,), ¥ .(t), @.(t2), ¥,.(£,)) is

1 \/’_1([1_1‘2)
0 Pn "L+ t,1,)
0 1 n\/’;(t2—tl) na
fe e | (1+1,1,) p
n(t,—t,
vRL—H) 1 0
P " +1,1,)
\/’;(tl_tz)
vRh—t) 1
P14 1,1,) Pnd 0
(5.14)
where
PRy 2 2
a=a(t1,t2)=——n(t2 1) A+l +13) (5.15)

(1+1¢,1,)? (141,2,)?

Suppose that ¢, and ¢, are two distinct fixed points. Then as n— o, the
quantity

(tl—tz)z ]n/z (5.16)

b=

goes to 0 exponentially fast, and hence A, approaches the unit matrix
exponentially fast. By (5.12) this implies that

hm Kn2(tl’ t2) —
n=0 P(t1) p.{t2)

and the rate of convergence is exponential. In the same way we obtain that
if ¢,,.., t,, are m distinct fixed points then

K, (t, 1)
pn(tl) o pn(tm)

=n’”f f V0 Vol Dol 05 91500 0 o5 1150 1) Ay -

— oo — 00

(5.17)
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where D, (X1, Vs Xps Vims Lo b)) 18 @ (2m) x (2m) Gaussian density
with the covariance matrix

An = (Ag_]n) L, j=1,.,m

where

\/;(ti_tj)

1 0 (1+1,1)

AW = , AW =p(t;,t; " 5.18

P=(o 1) A=) )
(1411, ey

where p,(1,,t,) and a(¢,, t,) are defined in (5.9) and (5.15), respectively.

For fixed different ¢,,..,t,, the matrix A, approaches the unit matrix

exponentially fast, and this implies that

K
llm nm(t19 ’ tm) -
n— OOpn(tl) o pn(tm)

and the rate of convergence is exponential. This means the independence of
the distribution of real zeros at distinct fixed points.

The formula (5.17) is simplified if we make the change of variables
¢t = tan 6 (stereographic projection). Consider therefore the random function

T

2.(0) =J_\;0 ci sin®(0) cos”—K(0),  — g< o<3 (5.19)
Then
g2,(8)=cos” §f,(tan 9) (5.20)
hence if {7;} are zeros of f,(¢) then
{n,=arctan 7} (5.21)

are zeros of g,(4). When ¢, =0, g,(0) has an extra zero = /2. Since the
probability that ¢, =0 is equal to zero, the joint probability distributions of
zeros of the functions g,(6) and f,(tan 0) coincide. By (5.6) the zeros {z,} are
uniformly distributed on the interval [ —x/2, z/2]. The function g,(6) is a
Gaussian random function with zero mean and the covariance function

n

Eg(0,)g.0,)=73 <Z> sin® 6, cos”" ¥ @, sin* 6, cos" * 0,
0

k=

=cos™(#, —0,) (5.22)
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The function g,(8) is periodic of period z if » is even, and it is periodic of
period 2z if n is odd. It is convenient to consider g,(d) on the circle
S!'=R/(2r) Z of the length 2z. This circle is the covering space of the
original circle R/nZ. If g,(8) =0 then g, (6 + ) =0 as well. On S the dis-
tribution of g, (6) is invariant with respect to the shift

#—->a+6 mod2n
hence it is O(1)-invariant.
Let K,,(6,,-,0,,) be the correlation function of the zeros {7} of
g,(6). Assume that
0,—0,#0 modm, 1<y, k<m (5.23)
Then (5.17) gives that
Knm(al 9oy em)
(71' —1 \/’;)m
=nmj J’; |yl"'ym,Dnm(()’yl""’o’ym;01""70m)dyl"'dym
(5.24)

where D, (X, Visws Xoms Vo O15eer B,y) 18 2 (2m) x (2m) Gaussian density
with the covariance matrix

4,=(45)

Lj=1..m

where

1 J/ntan(8,—0)) )

A =cos™(@.— 6,
;' =c0s"(0,~0) (ﬁ tan(6,—0,) —ntan*(g,—6;)+cos*(0,—0;)
(5.25)

Observe that D, (X1, Vises Xms Yoms O15-. 8,,,) is the probability distribution
density of the vector

0 80D o g0
(gn( W m>,——ﬁ>

and it is nondegénerate provided that »>2m —1 and (5.23) holds.
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Consider now the scaling limit of the correlation functions. The
straightened zeros are

Cj=’7j\/’;

T

They are uniformly distributed on the circle of the length 2 ﬁ The limit
m-point correlation function of {(;} is

K, (0,,.. ;
ko (5100 s,) = lim Koml0re 0n) 0y _ si7 (5.26)
newo (z7h /)" Jn
Let us find k,,(s,,..., 5,,). We have that
lim cos” <Q?ﬂ> =g i 92 (5.27)
n-—+ co n
and by (5.25),
lim An=A =(Aij)i,j=1 ,,,,, m
with
s 1 n(s;—s,)
o THsi— 52 iy 3
Al] ¢ (n(sj_si) l‘nz(si_sjy) (528)

By (5.24) this gives that
km(sl PR sm)

=2 [ I Yl A0, 210 0, 9,5 1 5,) oy, (5.29)

— 0

and d,(X 1, Vises Xos Vins S15e0s 5,,) 18 @ Gaussian density with the covariance
matrix 4. Let 2 be m x m matrix obtained by deleting all odd rows and odd
columns from the matrix 4 ~'. Then we can write (5.29) as

1 oo ©
k,,,(sl,..., Sm)=§WJ_w . “_[700 |y1 yml e_l/Z(YQvY) dyl dym
(5.30)
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In Appendix C below we prove that
A>0 if s;#s;, 1<i<j<m (5.31)

so the formula (5.30) is well-defined when the point s, are distinct.
For m =2, (5.30) reduces to

1 ) ©
ka5 52) = garqer ]| ale PRy dyy (532)

where
1 0 e =52 se—2
4| 0 1 —se™? (1—s%) e "
T e —se 57 1 0 (5.33)
se=? (1 —s%) e~ 0 1
s=7(s, —s,)
and

Q Z(A_l){2,4}

i.e., £2 is the 2 x 2-submatrix of 4! at the second and the fourth rows and
columns. Observe that
2.2

detQ:detA{l’3} =1—e_’”

det 4 det 4
A direct computation gives
det A=(1—e"")2 =g (5.34)
and
0o <A B)
B A
where
l—e " —s5% " e~ e +52—1)
A=, B= 5.35
det 4 det 4 ( )
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Since

Y 1/2(43% + AY2 + 2By, ;)
f J |y1 p2| e HRTARTER D dy, dy,
e d—o

_ 4 <1+ 0
T detQ /1 — 52

where 6 = B/A (see Appendix A), we obtain from (5.26) that

arcsin 6 >

1 P
(detA)”zdet.Q<1+ Yoy
_(detA)1/2<1+ 5
1—e~" J1-6
_[a —e T st

o
(14
1—e J1-68

ky(sy, )= arcsin 6>

arcsin 6 >

arcsin 5> (5.36)

where s =n(s; —s,) and

e~ e " +52—1)

52 _ sze—s2

5:

5.37
1—e™ ( )

It is worth to note that Hannay [ Han] has calculated the limit two-point
correlation function of zeros for the complex random SU(2) polynomial,
and our calculation of (5.36) is very similar to the one of Hannay.

As s— 0,

8 10 52
= = — 4
detA—12+0(s ), o=1 6+0(s)

which implies that

7 |5, — 55|

4 +O('S1—S2|2), SI—S2—>O (538)

ky(sy,$2)=

As s — o0,

det 4=1—s%""+0(e™"), 5= —s% 4 O(e="7?)
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which implies that
n4(s1 . s2)4 efnZ(s, — )

2 + O((s, —S2)2 PhEad »sz)Z)

ky(si,s5)=1+
(5.39)

sy —85] > 00

Thus we have proved the following theorem.

Theorem 5.1. Let {r;} be zeros of a random O(1) polynomial f,(¢)
of degree n, and

¢ ﬁ arctan 7,
J

T

be the straightened zeros. Then the limit m-point correlation function
k(51 5.y 8,,) Of {{;} is given by the formula (5.30) where 4 is a (2m) x (2m)
symmetric matrix which consists of 2 x 2 blocks 4, defined in (5.27), and
Q= (A" eveq is the m x m matrix of the elements of 4 ~! with even indices.
The 2-point correlation function is given by the formula (5.36), and its
asymptotics as s, —s, —» 0 and |s; —s,| — oo are given in (5.38) and (5.39),
respectively.

The graph of k,(0, s) is shown in Fig. 2.

08

0.6

0.4

021 B

0 L . n L .
0 0.2 0.4 0.6 0.8 1 12

Fig. 2. The two-point correlation function of straightened zeros of the O(1) random
polynomial.
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6. VARIANCE OF THE NUMBER OF REAL ZEROS OF THE 0O(1)
RANDOM POLYNOMIAL

Here we calculate the variance of the random variable &, (a, ) in the
case when f,(t) is the O(1) random polynomial. By definition,

Var {,(a, b) =E {(a,b) —(E¢,(a, b))’ (6.1)
By (2.17),
E &X(a, b)= jb Pty di+ fb Lb Kooty to) dt, di (62)
Since
(e 0= pieydn | p(e) dr (63)

we obtain that
b b b
Var &,(a,b)=[ pnyde+ | [ [Kna(ts, t2)—p(t2) p.(t2)] dt, d

0 bt Kolt, b))
[ o ae [ || S 1] g pyte e
(6.4)

When ¢, and ¢, are separated, the difference

K, (1, 15)
pn(tl)pn(tz)

is exponentially small, hence the main contribution to the last integral
comes from close ¢,, ¢,. Let us put

Then

b Kn2(t1,t2)
L L [m—l] pt)p(ty) dty dt,

~ [ paydt [ 0,9~ 1) ds

822/88/1-2-21
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hence
b o0
var¢,(a,b)~ [ pi(n)ds [ 1= (1=ks(0.5) ds]
Thus
Var & (a, b)~cfj (th)
where

C=1—f°° (k(0, s)— 1) ds

and k,(s,,s,) is the two-point correlation function given in (5.35). In
particular,

Var &,(— oo, oo)~Cﬁ
Numerical value of C is

C=0.5717310486902...

APPENDIX A. CALCULATION OF AN INTEGRAL
In this Appendix we show that

Rl e 1/2(Ay* + C¥2 + 2By, 3y)
I j |yiyole NEEREE 4y, dy,

4 b
:Ac—32<1+ 1—o2

where 6 = B/,/AC. By a change of variables we can reduce the integral
(A1) to

arcsin 5> (A1)

I=Jw Joo |y1.V2|eil/z(y%*—y;*—zay‘yz)dJ’ldyz

— o0 — o0



Correlations Between Zeros of a Random Polynomial 301
Changing then

1
=—(X; 4+ Xx
Y1 \/E 1 2)

1

y2=ﬁ('xl —X5)

we obtain that

1 (7 (7 2 2 1/2 2 5) x2
I= EJ J ]xl _x2| e 120U +8) x{+ (1 = &) x5] dx1 dx2
— Y —

Let
X = \/1}’? cos §
X, = \/;T5 sin &
Then

cos? @ sin? @
_S
e I

_ 1 © a—p 2
1—2(1_52)1/2j0 r-e drj;)

1 2n
:mj [(1—8)cos?0—(1+0)sin? 0| d6
- 0
1 27
=(1_:52_)_ﬁj0 |6 —cos 26| df

Evaluating the last integral we obtain that

4
]Zmﬁ(,/l—&z-i-éarcsiné)

hence (A.1) is proved.

APPENDIX B. POSITIVITY OF THE COVARIANCE MATRIX

Assume that f,(¢)=co+c t+ - +¢,t" is a polynomial with inde-
pendent random coefficients such that E ¢, =0 and 0 <E ¢} < co. We show
in this Appendix that the covariance matrix of the random vector

F,= (1), Lot ) [l 105 [(200)) (B.1)
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is positive, if ¢,,.., ¢,, are pairwise different and n>2m — 1. Consider the
real-valued quadratic form associated with the covariance matrix,

e, B) =3, [y E£(1) fultx) + 0,8 E£,(1) £(10)
Lk
+ B0 B (1) 1.8 + BiBi ES (1)) £l i) ]

2

=E

Y [ fult) + B, f3(1)]

m

n 2
-y ag[ 5 (ajt;f+ﬂjkt;1)]
k=0 j=1
The generalized Vandermonde matrix

(Rt ™) i =00 2m— 1

is nondegenerate, hence

n m 2
3 02| 3 (a,.t;f+ﬁjkt;1)] >0
j=1

k=0

provided that not all «;, §; are zero. This proves that the quadratic form
QO(a, B) is positive, hence the covariance matrix of the random vector (B.1)
is positive as well.

The proof remains valid if ¢, are, in general, dependent random

O, fy= Y Viuded,>0, dp=Y (a;th+Bkt<~)

k=0 j=1

provided that n>2m —1 and not all «;, f8; are zero.

APPENDIX C. PROOF OF THE INEQUALITY A>0

Let 4= (Ajk)j,k=1

,,,,,

1 (s,—sp)
A. =e‘(sj—sk)2/2 < j k )
* (Sk_sj) 1_(5j_5k)2-
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We prove in this Appendix that 4 > 0. Consider the complex-valued quad-
ratic form associated with 4,

e, B) =Z e_(sj_xk)z/z[“j‘ik + (Sj —5z) “j,gk + (s, —5,) ﬂj&k

+[1—(s;,—5:)°1 B;B8i]

Using the formulae

e—(sjvxk)z/Z — ei(s/-—‘sk)xe—xZ/Z dx

/1 .[

2w ¥ —oo

(s;,—s )e_(sfsk)z/z—-Lf e"‘sf‘sk)x(—ix)e*"z/2 dx

' — S -
n

— o0

[1— (5= 5,)?] e~ =

W %

*® 2
j ez(sjfsk) xx2e—x /2 dx
2r Y-

we can rewrite Q as

1 o ) _
O, B)= \/—27:- L dx e Y [o,0,e"s ™% 4o, B, e % *(—ix)

Ik
By (ix) + B0 <]

Define

f(x) = i ocjeisfx, g(_x) = i ﬁjeiij

Then
O, B) =ﬁ jio | £(x) +ixg(x)|> e~ > dx

The function f{x) + ixg(x) is not identically zero provided that not all «;, §;
are 0. Indeed, for every test function ¢(x),

m

f (f(x) +ixg(x)) p(x) dx =}, (0, @(s;) + B,¢'(s,))
Cw Pt
where @(s) is the Fourier transform of ¢(x). We can localize the function
@(s) near s; and make the last sum nonzero. This proves that f(x) + ixg(x)
is not identically zero, and hence Q(a, f)> 0. Hence 4> 0.
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